

Faculty of Engineering - Department of Mechanical Engineering First Semester 2019/2020

Course Information

Title:	Theory of machines (620333)	
Prerequisite:	Dynamics	
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)	
Textbook:	R. L. Norton, Design of Machinery "An Introduction to the Synthesis and Analysis of Mechanisms and Machines", McGraw Hill Higher Education; 3rd edition	
References:	 FUNDAMENTALS of KINEMATICS and DYNAMICS of MACHINES and MECHANISMS, by Oleg Vinogradov,2000 theory of machines and mechanics, by J.E. Shigley and J. J. Uicker 	
Catalog	Kinematic analysis of mechanisms, Velocity and acceleration polygons, Static	
Description:	and inertia force analysis of machinery, Dynamic analysis of cams, Gears,	
	Gear trains, Balancing of machines, Governors.	
Websites:	http://www.philadelphia.edu.jo/academics/laithb/	
Instructors:	Eng. Laith Batarseh	
	Email: lbatarseh@philadelphia.edu.jo Office: Engineering building, room E61208, ext: 2135 Office hours: Sunday and Tuesday 10:00 – 11:00 Monday and Wednesday 11:30 – 12:30	

Course Topics

Week	Торіс	
1+2	Introduction +Linkages	
3+4	Position analysis	
5	Velocity analysis	
6	Acceleration analysis	
7+8	Static and dynamic analysis	
9+10	Cam mechanism	
11+12	Normal Gearing and gear trains.	
13	Planetary gear trains	
14	Balancing	
15	Governors	
16	Review, and final exam	

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

1.	Differ between the different types of mechanisms	1
2.	Be able to calculate the mechanism mobility.	1
3.	Be able to perform position, velocity and acceleration analysis	1
4.	Be able to design a cam	1
5.	Be able to design gear train	1
6.	Be familiar with planetary gear trains and how to design its	1
7	Be able to perform a rotary balancing	1
8	Be familiar to the governors (i.e. speed limiters): its design and applications	1
9	Conduct a project consists of analyzing any mechanism from his/her choice	1,3,5,7

Assessment Instruments:

Evaluation of students' performance (final grade) will be based on the following categories:

Exams:	Two written exams will be given. Each will cover about 3-weeks of
	lectures

- **Quizzes**: 10-minute quizzes will be given to the students during the semester. These quizzes will cover material discussed during the previous lecture(s).
- **Participation:** Questions will be asked during lecture and the student is assessed based on his/her response
 - Final Exam: The final exam will cover all the class material.

Grading policy:

First Exam	20%
Second Exam	20%
Quizzes	15%
Homework and project	5%
Final Exam	40%
Total:	100%

Attendance policy:

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.